КОСЕКАНС - definizione. Che cos'è КОСЕКАНС
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è КОСЕКАНС - definizione

ФУНКЦИИ, ВЫРАЖАЮЩИЕ ОТНОШЕНИЯ МЕЖДУ СТОРОНАМИ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА
Тангенс; Косинус; Котангенс; Секанс; Косеканс; Синус (функция); Sinus; Tan; Тригонометрическая функция; Sin; Tg; Ctg; Cotan; Cosec; Csc; Sec; Синус; Формулы приведения; Тригонометрические таблицы
  • none
  • none
  • none
  • none
  • none
  • none
  • Рис. 4.<br>Тригонометрические функции острого угла
  • Определение тангенса. Марка СССР 1961 года
  • Рис. 2.<br>Определение тригонометрических функций
  • тригонометрической окружности]] с радиусом, равным единице
  • inline}}
  • Значения косинуса и синуса на окружности

КОСЕКАНС         
(новолат. cosecans, от complementi secans - секанс дополнения), одна из тригонометрических функций.
косеканс         
муж. матем. секанс дополнения дуги и угла к 90°. Косинус муж. синус дополнения угла к 90°.
косеканс         
КОС'ЕКАНС [сэ], косеканса, ·муж. (·лат. cosecans) (мат.). Тригонометрическая функция - секанс дополнительного угла.

Wikipedia

Тригонометрические функции

Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла дуги в круге). Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.

Раздел математики, изучающий свойства тригонометрических функций, называется тригонометрией.

К тригонометрическим функциям традиционно причисляют:

прямые тригонометрические функции:
  • синус ( sin x {\displaystyle \sin x} );
  • косинус ( cos x {\displaystyle \cos x} );
производные тригонометрические функции:
  • тангенс ( t g x = sin x cos x ) {\displaystyle \left(\mathrm {tg} \,x={\frac {\sin x}{\cos x}}\right)} ;
  • котангенс ( c t g x = cos x sin x ) {\displaystyle \left(\mathrm {ctg} \,x={\frac {\cos x}{\sin x}}\right)} ;
  • секанс ( sec x = 1 cos x ) {\displaystyle \left(\sec x={\frac {1}{\cos x}}\right)} ;
  • косеканс ( c o s e c x = 1 sin x ) {\displaystyle \left(\mathrm {cosec} \,x={\frac {1}{\sin x}}\right)} ;
обратные тригонометрические функции:
  • арксинус, арккосинус и т. д.

В типографике литературы на разных языках сокращённое обозначение тригонометрических функций различно, например, в англоязычной литературе тангенс, котангенс и косеканс обозначаются tan x {\displaystyle \tan x} , cot x {\displaystyle \cot x} , csc x {\displaystyle \csc x} . До Второй мировой войны в Германии и во Франции эти функции обозначались так же, как принято в русскоязычных текстах, но потом в литературе на языках этих стран был принят англоязычный вариант записи тригонометрических функций.

Кроме этих шести широко известных тригонометрических функций, иногда в литературе используются некоторые редко используемые тригонометрические функции (версинус и т. д.).

Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначны, периодичны и бесконечно дифференцируемы, за исключением счётного числа разрывов второго рода: у тангенса и секанса в точках ± π n + π 2 {\displaystyle \pm \pi n+{\frac {\pi }{2}}} , а у котангенса и косеканса — в точках ± π n {\displaystyle \pm \pi n} .
Графики тригонометрических функций показаны на рис. 1.

Che cos'è КОСЕКАНС - definizione